
Potential-energy landscape of a supercooled liquid and its resemblance to a collection of traps

A. Heuer,1 B. Doliwa,2 and A. Saksaengwijit1
1Westfälische Wilhelms-Universität Münster, Institut für Physikalische Chemie and International Graduate School of Chemistry,

Corrensstr, 30, 48149 Münster, Germany
2TU Darmstadt, TEMF, 64289 Darmstadt, Germany

�Received 9 March 2005; revised manuscript received 22 June 2005; published 9 August 2005�

It is analyzed whether the potential energy landscape of a glass-forming system can be effectively mapped
on a random model which is described in statistical terms. For this purpose we generalize the simple trap model
of Monthus and Bouchaud �J. Phys. A 29, 3847 �1996�� by dividing the total system into M weakly interacting
identical subsystems, each being described in terms of a trap model. The distribution of traps in this extended
trap model �ETM� is fully determined by the thermodynamics of the glass former. The dynamics is described
by two adjustable parameters, one characterizing the common energy level of the barriers, the other the
strength of the interaction. The comparison is performed for the standard binary mixture Lennard-Jones system
with 65 particles. The metabasins, identified in our previous work, are chosen as traps. Comparing molecular
dynamics simulations of the Lennard-Jones system with Monte Carlo calculations of the ETM allows one to
determine the adjustable parameters. Analysis of the first moment of the waiting distribution yields an optimum
agreement when choosing M �3 subsystems. Comparison with the second moment of the waiting time distri-
bution, reflecting dynamic heterogeneities, indicates that the sizes of the subsystems may fluctuate.
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I. INTRODUCTION

Understanding the properties of supercooled liquids and
in particular the nature of the glass transition is still a major
scientific challenge. An important concept to grasp the im-
portant physics is related to the potential energy landscape
�PEL� �1–3�. In this view the system is regarded as a point in
the high-dimensional configuration space. At sufficiently low
temperatures the system is mainly characterized by the dif-
ferent minima �inherent structures� of the PEL and their re-
spective harmonic attraction basins �4–7�. With the advent of
faster computers in recent years it became possible to eluci-
date the properties of the minima and the saddles and thus to
relate the thermodynamic �5,8–10� as well as the dynamic
behavior of supercooled liquids �11–23� to the properties of
the PEL. Most of the work has been devoted to the study of
the thermodynamics. From analyzing the PEL for different
densities it was possible, e.g., to extract the equation of state
over a very broad range of temperatures and pressures
�10,24�.

The Adam-Gibbs relation constitutes a relation between
the dynamics and the thermodynamics �25�. It expresses the
relaxation time in terms of the configurational entropy. This
relation seems to hold rather well for different systems
�11,26,27�. The theoretical relevance, however, is not clear
so far. Therefore it is still an open question which properties
of the PEL beyond the distribution of inherent structures de-
termine the dynamic behavior �28�.

It has been attempted to fill this gap between thermody-
namics and dynamics by phenomenological models for
which the system is hopping between discrete states like for
the random-energy model or the trap model �29–31�. Here
we are, in particular, interested in the trap model as discussed
by Monthus and Bouchaud �30�. This model starts from a
distribution G�e� of traps with depth e. The average waiting
time in a trap of depth e is given by ��e ,T�=�0exp��V�e��

where V�e�=b−e and b is the common barrier level. After
thermal excitation the system randomly chooses a neighbor
trap; see Fig. 1 for a one-dimensional sketch. The trap ener-
gies are randomly distributed. Of course, for a real system
one has to consider a distribution of traps in high-
dimensional space. At low temperatures the slow dynamics is
related to very long residence times in deep traps. Most work
has been devoted to exponentially distributed traps but dif-
ferent distributions G�e� can be chosen as well. In any event,
G�e� fully determines the thermodynamic properties and
should reflect the energy distribution of inherent structures. A
priori, it is not clear whether the trap model is of major
relevance for describing the PEL of real glass-forming liq-
uids. From a conceptual point of view an important property
of the trap model is its non-topographic nature. The arrange-
ment of traps is purely statistical and the dynamics is exclu-
sively related to the properties of the individual traps and not
to possibly subtle correlations among adjacent traps. We
mention in passing, that in alternative approaches the dynam-
ics is rationalized without any reference to thermodynamic
properties �32�.

FIG. 1. Thick line: Sketch of the standard trap model. Thin line:
The traps are identified as the metabasins and typically contain
several inherent structures.
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A very detailed analysis of the dynamics naturally in-
volves the properties of the barriers between the inherent
structures as well as the topology of the PEL. For a binary-
mixture Lennard Jones system �BMLJ� trajectories, gener-
ated via molecular dynamics simulations, have been ana-
lyzed in detail. It is immediately visible that during very long
times the system resides in some fixed region of the configu-
rational space. Thus the dynamics is restricted to simple back
and forth jumps between a finite number of inherent struc-
tures �19,21,33�. It is useful to regard such a set of inherent
structures as an elementary state, denoted metabasin �MB�
�20,34–36�. The energy and configuration of a MB is taken
from the inherent structure of this MB with the lowest en-
ergy. Finally, the total trajectory of the system in configura-
tion space can be regarded as a sequence of different MB,
each characterized by an energy and a waiting time. Actually,
some work has been recently performed to relate this con-
figurational space picture to real space dynamics �35,37–40�
and to explain the response to applied strain in glasses with
the help of the concept of MB �41�.

Here we would like to remind the reader of a remarkable
result, presented in previous work �21�. It turns out that for
all relevant temperatures analyzed so far

�
i=1

N

��ri�n� − ri�0��2� � a2n . �1�

The left term denotes the mean square displacement after n
MB-transitions and a2 is the temperature-independent aver-
age distance between two adjacent MB in configuration
space. Two important consequences follow from Eq. �1�: �i�
On the level of MB the dynamics of the BMLJ system can be
described as a random walk in configuration space; �ii� The
diffusion constant can be expressed as �21�

D�T� = a2/6���T�� . �2�

Thus knowledge of the average waiting time is sufficient to
predict the macroscopic dynamics. Actually, the simplicity of
these results can serve as the a posteriori justification for the
introduction of the MB approach because on the level of
inherent structures no simple physical picture can be formu-
lated for the dynamics of the BMLJ system �21�. Recent
work for a pure Lennard-Jones system of significantly
smaller size seems to indicate that there the random-walk
like dynamics already holds on the level of inherent struc-
tures �42�.

Another remarkable result is the fact that a BMLJ system
with N=65 particles has no relevant finite size effects for the
dynamics in the accessible temperature range for computer
simulations �43�. In particular, a system with N=130 par-
ticles behaves like an independent superposition of two sys-
tems with N=65 particles. Therefore it is sufficient to study
the PEL of the BMLJ system with N=65 particles. Actually,
when choosing even smaller systems �e.g., N=40� significant
finite-size effects occur �6�.

Maybe the simplest disordered model, reproducing the
observed features, is the trap model as introduced above.
Since the distribution of traps is fully determined by the
thermodynamics of the system, the dynamics is basically

governed by a single parameter, namely, the barrier height b.
In any event, if the PEL can be mapped on a trap model, the
MB have to be identified as traps; see Fig. 1. Recent simu-
lation work for the BMLJ system directly shows in different
ways that on a quantitative level the predictions of the trap
model are neither compatible with the distribution of waiting
times �19� nor with the activation energy V�e�=b−e �20�.

The scope of this work is twofold. First, we will use gen-
eral arguments to define an extended version of the trap
model. It fulfills some basic requirements which any model
for glass-forming systems should fulfill. Second, by detailed
comparison with the properties of the BMLJ system we elu-
cidate to which level this extended trap model will be able to
explain the BMLJ dynamics. From the remaining differences
important information about the nature of the PEL can be
derived. Among other things the concept of dynamic hetero-
geneities is related to properties of the PEL in a detailed way.
Finally, some possible applications of the present results will
be indicated.

II. BMLJ SYSTEM

A. Definition

The BMLJ system is one of the standard glass-forming
systems used in computer simulations. It contains 80% large
and 20% small particles. We use the potential parameters as
outlined in Refs. �20,44�. We have performed molecular dy-
namic simulations for temperatures between T=0.4 and T
=1 with system size N=65 and using periodic boundary con-
ditions. Here we present data for T�0.45. All units are given
in LJ units. The mode-coupling temperature for this model is
Tc�0.45 �21,45�. As shown in previous work this system
size is large enough to reproduce the macroscopic behavior
of the BMLJ at least for T�Tc.

B. Some previous results

The most important quantity for the thermodynamics is
the effective density of MB, i.e., G�e�. In previous work it
turned out that to a very good approximation

G�e� � exp�− �e − e0�2/2�0
2� �3�

with e0=−279.2 and �0
2=9.05 in Lennard-Jones units

�5,6,20�. From entropy arguments one can estimate that G�e�
has a low-energy cutoff around e=−306. From G�e� one can
calculate the Boltzmann probability p�e ,T� that at some ran-
domly chosen time the system visits a MB of energy e at
temperature T via

p�e,T� � G�e�exp�− e/T� . �4�

Note that G�e� is slightly different from the real density of
MB due a small dependence of the local curvature of the
different MB on their energy e �5,6�. We just mention in
passing that basically the same results for the thermodynam-
ics are obtained if inherent structures rather than MB are
analyzed.

In previous simulations we have analyzed in detail the
waiting time of the system in MB of energy e. Averaging
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over different MB with energy e we have found the relation

���e,T�� = �0�e�exp��Vef f�e�� , �5�

i.e., the average waiting time in a MB of energy e shows
simple Arrhenius behavior. The function Vef f�e� can be inter-
preted as the average saddle height when leaving a MB of
energy e. This function is reproduced in Fig. 2. Note that it
was possible to identify the saddles in the PEL which give
rise to the specific values of Vef f�e�. For e�−295 the func-
tion Vef f�e� is linear in e with slope −0.55. In the high-energy
limit Vef f�e� approaches a constant close to 1. This reflects
the fact that the dynamics in high-energy states resembles a
nonactivated fluidlike dynamics. Using this choice of Vef f�e�
it is possible to formally describe this fluid-like dynamics as
transitions between MB �20�. A similar limiting value is re-
ported in �46�. In the same energy range the effective pref-
actor �0�e� increases by one order of magnitude �20�.

As shown in �22� the dynamics is governed by activated
processes for T�0.6. Correspondingly, the average waiting
time is dominated by the escape from low-energy MB �e�
−295�. For temperatures below Tc it becomes difficult to ob-
tain equilibrium data. Therefore we restrict our detailed
analysis to temperatures between 0.45 and 0.6 to compare
the dynamics of the BMLJ system with the predictions of the
modeling. In Fig. 2 we have also included the distributions
p�e ,T� in this temperature range, obtained from Eq. �4�. On
the low-energy side the contribution stems from few events
with relatively large waiting times. Thus energy-dependent
observables for, say, e�−300 possess rather large statistical
errors. In the detailed analysis of the subsequent sections we
consider MB with e� �−300,−295�.

III. EXTENDED TRAP MODEL: DEFINITION AND
INTERPRETATION

A. General aspects of statistical models

How do properties of the PEL translate into dynamics?
According to the landscape paradigm the properties of glass-
forming systems are reflected by the properties of the
minima. As discussed above, we would use the MB rather

than the minima as the basic objects. In any event, one has
an exponentially large but finite number of states. In the most
detailed description the dynamics out of some state i is gov-
erned by two temperature-dependent functions. First, the
probability function r�,… , i→ j� describes the probability
that the next state visited is state j. The dots indicate that in
principle this probability may also depend on the history
before entering state i. Second, the waiting time in state i is
characterized by the distribution function of the waiting
times f��	 ,… , i→ j� when going from state i to state j.

Of particular interest are the low-energy states because
they determine the dynamics at low temperatures. As shown
in �22� the escape out of these states is activated. This im-
plies that the dynamics can be very well described as Mar-
kovian, i.e., the escape out of state i does not depend on the
previous states. Furthermore the waiting time distribution is
close to exponential, i.e., characterized by a single average
waiting time. This is explicitly shown in Fig. 3 for two ran-
domly chosen MB, both having energies close to e=−302.
To obtain one set of data, we have performed repeated simu-
lations from the same initial configuration, using different
initial velocities. Performing our standard MB analysis we
have identified for every run the time when the system is
leaving the MB.

As a consequence, the dynamics is fully characterized by
the probability function r�i→ j� and the average waiting time
of state i. Alternatively, the information can be expressed by
the transition rates ��i→ j�. On this level, the total dynamics
can be formulated as a set of rate equations. The rates can in
principle be determined from simulations. Actually, for very
small systems where most relevant states and corresponding
saddles can be explicitly determined, rate equations have
been already studied �47�. We mention in passing that in this
framework equilibrium as well as nonequilibrium phenom-
ena are fully characterized.

This approach has to fail for an exponentially large num-
ber of relevant minima. Rather one has to resort to some

FIG. 2. �Color online� The function Vef f�e� as obtained for the
BMLJ system together with the distribution p�e ,T� for three differ-
ent temperatures. FIG. 3. �Color online� The probability distribution of waiting

times for two randomly chosen MB. The time axis has been nor-
malized by the respective average value �avg. A perfect exponential
waiting time distribution with slope −1 has been included. For bet-
ter visibility the curves are shifted against each other. Sixty escape
events have been analyzed for each MB.
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statistical approach. This involves two steps. First, one has to
characterize each state i by some relevant internal parameters
xi,1 ,xi,2 ,…, . As a natural choice energy may be taken as one
of these parameters. Then a direct connection to the thermo-
dynamics becomes possible. Second, one has to define the
transition rates �T�i→ j�. In the trap model, e is the only
internal parameter and �T�i→ j� does not depend on j. For a
good statistical model it would be possible to reproduce any
time dependence of the energy for any temperature schedule,
i.e., also in nonequilibrium situations. Reproducing observ-
ables like the alpha-relaxation time or the diffusion constant
requires additional information about the real-space nature of
the different states. Fortunately, for the BMLJ system �and
also for SiO2 �unpublished results��, Eq. �1� expresses a very
simple relation between the configuration space dynamics
and the temperature dependence of the diffusion constant.

Searching for a very simple statistical model one may
naturally end up with a trap model because it only involves
the energy as the only internal parameter. Beyond its simplic-
ity it has the advantage that of automatically reproducing the
random-walk like nature of dynamics �Eq. �1��. However, as
mentioned in the Introduction major discrepancies between
the BMLJ data and the predictions of the trap model have
been reported. In the following we will formulate an exten-
sion of the trap model by including more than one internal
parameter. Then it will be possible to reproduce several non-
trivial aspects of the BMLJ dynamics.

B. Relaxation in a collection of elementary trap systems

It is well accepted that for supercooled liquids there exists
a finite dynamic correlation length, sometimes denoted
length scale of dynamic heterogeneities �48–50�. It can even
be measured experimentally �51,52�. At a given temperature,
on average P particles �P may be somewhat temperature
dependent� relax in a collective fashion. Stated differently,
relaxation processes are restricted to small regions of the
system, containing on average P particles. Depending on the
exact definition of the length scale of dynamic heterogene-
ities one expects values between 10 and 100 particles. Thus
one may be tempted to divide the total system into M
=N / P subsystems which to first approximation behave inde-
pendently �43,46�. Of course, the division into M subsystems
should not be taken too literally. Rather these border lines
may fluctuate with time �see also below�. Guided by the
random-walk nature of the dynamics in configuration space
we approximate every individual subsystem by a trap model;
see Fig. 4�a�. The resulting model is termed extended trap
model �ETM�. Then the total energy e may be written as e
=�m=1

M em. A simple trap model would correspond to M =1.
However, in this case one would have expected that Vef f�e�
has a slope of −1 for low e in contrast to the real behavior;
see Fig. 2. Thus it is already clear that a mapping on a simple
trap model is not possible and that, if at all, M 	1 has to be
chosen for a BMLJ system with N=65 particles �19,20�.

In order to reproduce the thermodynamics of the BMLJ
system the distribution of traps G�e� in each subsystem has
to be chosen as

GM�em� � exp
−
�em − �e0/M��2

2��0
2/M�

� . �6�

The dynamics are expected to strongly depend on the length
scale of dynamic heterogeneities, i.e., on the value of M. In
what follows, we will present results for different values of
M and identify the optimum choice.

As discussed above, the most relevant parameter of any
trap model is the common barrier level b. For low energies
this gives rise to the choice V�e�=b−e as the barrier height
to leave a trap �i.e., MB� of energy e. To cope with the
high-energy limit of Vef f�e�, discussed above, we choose
V�e�=1.0 for high e. The precise value is irrelevant for the
results in the relevant temperature range. In total, we have
V�e�=max�b−e ,1�. This function is sketched in Fig. 4�b�.
The average waiting time in a trap of energy e is given by

��e,T� = �0exp��V�e�� . �7�

The value of �0 is a trivial scaling factor for the overall time
scale and can be simply adjusted.

C. Dynamic interaction between subsystems

The ETM, introduced so far, starts from a collection of M
totally independent subsystems. However, one should rather
expect that a local relaxation process may somewhat influ-
ence the state of the adjacent subsystems. Thus, some kind of
dynamic interaction should be included, i.e., a modification
of the state of an adjacent subsystem as a result of a relax-
ation process. In real space this modification might corre-
spond to a minor shift of particles in the adjacent sub-
systems. This shift may somewhat change the probability for
a relaxation process in these subsystems. Actually, already in
the original paper of Monthus and Bouchaud their master
equation for the energy probability distribution has been
supplemented by an energy diffusion term which exactly
takes into account the effect of relaxation processes on adja-
cent particles �30�.

Here we introduce a simple ingredient of the ETM which
reflects the relevant physics of the dynamic interaction. In
particular we will take care that the thermodynamics of the
total system is not modified. This condition is nontrivial be-
cause any variation of states may directly influence the prob-
ability distribution of states and thus change quantities like
the average energy.

FIG. 4. The division of the total system in M independent sub-
systems �here: M =3�. Of course, the borders are expected to fluc-
tuate with time. �b� Every subsystem is described by a trap model,
which is characterized by the function V�e�.
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For the total system one may define the distribution

�e ,T� via


�e,T� � p�e,T�/���e,T�� . �8�

It denotes the probability that after or before a transition a
MB has the energy e. Thus, generation of MB according to
the 
�e� distribution �for convenience we suppress the de-
pendence on T� yields the correct statistics of MB and thus
the correct thermodynamics. Conceptually, the distribution

�e� is close to the distribution of MB, i.e., G�e�. Some
minor �temperature-dependent� deviations are present be-
cause in the present version of the trap model the relation
V�e�=b−e is not valid for the high-energy traps with e	b
−1.

In what follows we generalize Eq. �8� to the case M 	1.
First we consider the case M =2 but generalizations are
straightforward. Let the subsystem 1 be in state e1 and the
subsystem 2 in state e2. In the ETM the transition of the total
system is achieved by a transition of one subensemble. Then
the rate 1 /��e1 ,e2� for a transition of the system is given by
the sum of the individual rates, i.e.,

1/��e1,e2� = 1/��e1� + 1/��e2� . �9�

Furthermore due to the independence of the two sub-
systems the combined Boltzmann probability p�e1 ,e2� is
identical to the individual Boltzmann probabilities, i.e.,

p�e1,e2� = p�e1�p�e2� . �10�

Finally, the probability that after �or before� a transition of
the total system one finds energies e1 and e2 are given by


�e1,e2� � p�e1,e2�/��e1,e2� � p�e1�p�e2��1/��e1� + 1/��e2��

� 
�e1���e1�
�e2���e2��1/��e1� + 1/��e2��

� 
�e1�
�e2����e1� + ��e2�� . �11�

Due to the enormous dynamic heterogeneities �see below�
the waiting times are distributed over many orders of mag-
nitude. Thus, at a randomly chosen time one will typically
find both subsystems in traps of very different waiting times
�1 and �2. Let us assume that a jump process occurred in
subsystem 1. Then it is very likely that the state before the
jump was characterized by �1��2. Therefore one can write


�e1,e2� � 
�e1�
�e2��2 � 
�e1�p�e2� . �12�

Now we may define the dynamic interaction. It is mod-
eled such that after a jump in one subsystem with probability
q a new trap is selected in the other subsystem. According to
Eq. �12� the energy of the new trap in every subsystem has to
be selected from the probability distribution p�e2�. This im-
plies that the thermodynamics is not modified by the dy-
namic interaction. Furthermore, the principle of causality is
directly implemented. Of course, in practice one would ex-
pect that every jump induces a minor rearrangement so that
after 1 /q jumps of the fast subsystem a total rearrangement
with respect to the p distribution has occurred. This gradual
process, however, is very well approximated by the random
process, introduced above.

Actually, for the low-energy limit, i.e., for ��e2�
�exp���b−e2��, there exists a more intuitive rationalization
of the factor p�e2� in Eq. �12�. It is reasonable to assume that
the probability for subsystem 2 to change its energy from e2�
to e2 will be proportional to 
�e2� and the Boltzmann factor
exp���e2�−e2��. Therefore the probability to be in state e2

is proportional to 
�e2�exp���e2�−e2���
�e2�exp�−�e2�
�
�e2���e2�� p�e2�. Of course, the original derivation of Eq.
�12� is more general.

For general M one obtains the relation


�e1,…,eM� � 
�e1�p�e2� ¯ p�eM� �13�

if a jump occurred in the first subsystem. Here we modify all
subsystems m=2,… ,M with probability q according to the
respective Boltzmann distribution p�em�. Evidently, in reality
the dynamic interaction between subsystems may be some-
what more complicated. It will turn out, however, that this
simple choice already captures the main effect of the inter-
action.

D. How to compare the ETM dynamics with the BMLJ
dynamics?

So far we have introduced the ETM with three parameters
M ,b, and q. Every state is characterized by the internal pa-
rameters e1 ,… ,eM. The time evolution of the system accord-
ing to the ETM is generated in a straightforward way. After a
relaxation process in one of the M subsystems a new energy
is selected for this subsystem according to the 
 distribution,
defined in Eq. �8�. Furthermore with probability q a new
energy is selected for the other M −1 subsystems according
to the p distribution, defined in Eq. �4�. The total energy of
all subsystems is denoted ei �the upper index counts the num-
ber of transitions of the total system�. In the next step for
every subsystem a waiting time �act�em� is calculated. It is
drawn from an exponential distribution with the average
value ��em ,T�; see Eq. �7�. Then the subsystem with the
shortest waiting time �act,min is selected to perform a relax-
ation process and the time proceeds by exactly �i��act,min.
This procedure is then repeated and in the next step ei+1 and
�i+1 are obtained, etc. The output is a sequence of waiting
times �i� and corresponding energies ei�. Exactly these two
sequences can be also obtained from analysis of the equilib-
rium BMLJ dynamics.

Both series together characterize in a detailed way how
the system is exploring the PEL. They are to a large extent
characterized by �i� the first and second moments of their
respective distribution functions and �ii� by their correlation
functions

f��n� � ��n�0 − ���2�/��� − ����2� . �14�

The variable n counts the number of MB transitions and �
� � ,e�. The denominator guarantees that f��0�=1. Basi-
cally, the f��n� express to which degree the waiting times
and the MB energies are correlated after n MB transitions.
Since the trap distribution in the ETM is chosen in order to
reproduce the thermodynamics of the BMLJ system, the dis-
tribution of energies is naturally recovered. Thus the observ-
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ables ��� , ��2� , f��n�, and fe�n� may be taken for compari-
son. If the ETM is an appropriate model to characterize the
PEL it should be possible to choose the model parameters
M , b, and q such that the BMLJ results of these observables
are recovered for the relevant temperature regime between
0.45 and 0.6.

It is important to clarify the influence of the dynamic
interaction parameter q on the series of waiting times and
energies, respectively. Since our procedure does not change
the distribution 
�e1 ,e2� �here for M =2� and since the wait-
ing times are directly related to the energies, the distributions
of waiting times and energies do not depend on q. In con-
trast, due to the additional variation of energies �and thus
waiting times� one may expect that the decay of f��n� be-
comes faster with increasing q. Thus, except for comparison
of f��n� we may choose q=0.

IV. RESULTS OF THE MAPPING

So far we have developed a minimum model for the PEL
of a glass-forming system based on the trap model as the
elementary unit. Now we compare the resulting ETM with
the BMLJ system. As already mentioned this comparison
involves the time series of waiting times as well as the time
series of MB energies.

A. Time series of waiting times

First, we analyze the autocorrelation function f��n�. The
result for the BMLJ system is shown in Fig. 5. Interestingly,
it turns out that already after one step, the new waiting time
is basically uncorrelated to the old waiting time. This obser-
vation can be easily rationalized in terms of the ETM. From
Eq. �12� �or Eq. �13� for general M� it follows that the new
state of subsystem 1 will be drawn according to the distribu-
tion 
�e1�. Since 
�e1� is peaked at much higher energies
than p�e2� it is very likely that also the next jump occurs in
subsystem 1 �see below for a closer analysis of this effect�.
Since, however, two successive energies in subsystem 1 are
uncorrelated �by definition� the same holds for the two suc-

cessive waiting times for this subsystem. Since these waiting
times determine the waiting time of the total system �because
subsystem 2 is basically immobile� one may conclude that in
general two successive waiting times of the total system are
to a very good approximation uncorrelated. Of course, it can
be checked explicitly �data not shown�. This nontrivial pre-
diction fully agrees with the MD data for the BMLJ system.

Now we discuss the first and second moments of the wait-
ing time distribution f��� which, of course, strongly depend
on temperature. As discussed above we may set q=0 for the
comparison with the BMLJ system. In a first step we deter-
mine the respective values of b �for different values of M�
from the condition that the temperature dependence of ���
should agree as well as possible with the BMLJ data.

There are two different ways to estimate the value of ���.
On the one hand, one can calculate the average of all waiting
times, observed during a simulation run of time tsim. On the
other hand, one may determine the number of transitions n
and take tsim /n as the average waiting time. As shown in
Appendix A the second choice can be applied for any simu-
lation time tsim. In contrast, the first choice is only applicable
for very large tsim. Therefore we prefer to use the second
choice.

In Fig. 6 we show the temperature dependence of the
average waiting time ���T�� as obtained from the MD simu-
lations. These data are used to determine an optimum value
of the common barrier level b for the different choices of M.
The resulting predictions for the ETM are also included in
Fig. 6. The values for b, obtained from this fitting, are listed
in Table I. The agreement with the BMLJ data is not perfect
but this single fitting parameter b is enough to reproduce the
temperature dependence in the relevant temperature range
between 0.45 and 0.6 in a semiquantitative way. By increas-
ing the value of b it would have been possible to improve the
agreement for low temperatures whereas the deviations at
higher temperatures would have become stronger. In any
event, the temperature dependence of the ETM for the dif-
ferent values of M looks very similar. Deviations at higher
temperatures are expected because in this regime flowlike
processes become more important which, of course, cannot
be fully captured by the ETM.

FIG. 5. �Color online� The correlation function of waiting times
in dependence of the number of MB transitions for the BMLJ sys-
tem at T=0.5.

FIG. 6. �Color online� The average waiting time of MD simula-
tions as compared with the predictions of the ETM with different
values of M. The resulting values of b and �0 for the different M are
given in Table I.
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So far we have analyzed the average waiting time. At a
given temperature it has contributions from MB with very
different energies. Therefore it is more informative to ana-
lyze the waiting time in dependence of temperature and en-
ergy. As expressed by Eq. �5� there is a significant depen-
dence of the average waiting time on the MB energy in the
BMLJ system. For this purpose we consider the energy de-
pendence of the quantity T ln���e ,T��. For a simple trap
model �see Eq. �7�� it is linear with slope −1. What is the
result for the ETM? The result for M =3 is shown in Fig. 7�a�
for the energy interval �−300,−295�. Interestingly, for all
temperatures �T=0.45; T=0.5; T=0.6� a constant slope is
observed which furthermore is identical for the three curves.
For the energy interval �−300,−295� the data for the differ-
ent temperatures can thus be consistently described by

T ln���e,T�� � const�T� − ce �15�

with c=0.33. We have repeated the same analysis for the
different values of M. One observes the same behavior ex-
cept for different values of c; see Table II.

Actually, the value of c can be also estimated from gen-
eral arguments which have been already partly presented in
�20�. For M subsystems and individual energies �e1 ,… ,eM�
in the limit of low temperatures the activation energy is
given by min�V�e1� ,…V�eM��=V�emax� where emax is the
largest value of the em�. To calculate the apparent activation
energy Vef f�e� for fixed total energy e, one has to average this
expression over different realizations of the em under the
constraint e=e1+ ¯ +eM. As a first approximation, however,
one may take emax�e /M +e. The second term accounts for
the deviation of emax from the average value e /M. It can be
expected that e only weakly depends on e. Then one has

Vef f�e� = V�emax� = V�e/M + e� � const − �1/M�e .

�16�

Thus one expects that the slope c is close to 1/M which is in
excellent agreement with the numerical results in Table II.

In analogy to the ETM we have calculated the quantity
T ln���e ,T�� for the BMLJ system for the same temperatures.
The results are displayed in Fig. 7�b�. Interestingly, the data
also display a linear energy dependence. Therefore it is pos-
sible to directly extract the value of M if the BMLJ data are
interpreted in terms of a ETM. For the two lowest tempera-
tures the resulting slope is closest to M =3. For reasons of
simplicity we also choose M =3 for the T=0.6. The weak
temperature dependence of the slope will be further dis-
cussed below. We note in passing that for a monatomic
Lennard-Jones system of 32 particles the average barrier
height linearly depends on energy with slope one. This
would correspond to M =1 and is thus qualitatively compat-
ible with the present result for a larger �and somewhat dif-
ferent� system �46�.

In the next step we want to elucidate the nature of the
fluctuations. A natural choice would be the quantity

S�T� �
��2� − ���2

���2 �17�

including the first and second moments of the waiting time
distribution f���. It can be regarded as a measure for the
normalized variance of the waiting time distribution. Around
Tc one approximately finds f�����−2 for large �. Without a
cutoff of f��� at long times the variance would diverge for

TABLE I. The values of the barrier level b and the prefactor �0,
obtained from the fitting as discussed in Fig. 6.

M b-1 �0

2 −143.1 160

3 −93.3 43

4 −68.3 14

6 −43.4 4

FIG. 7. �Color online� The quantity T ln���e ,T�� for different
energies and temperatures in the energy range �−300,−295�. �a�
Results for the ETM for the example M =3. The resulting slopes for
all relevant values of M are listed in Table II. �b� Results for the
BMLJ. The resulting temperature-dependent slopes are included in
the figure.

TABLE II. The slope c obtained from analyzing the energy de-
pendence of T ln���e ,T�� in Fig. 7.

M c

2 0.44

3 0.33

4 0.25

6 0.17
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this distribution. This implies that the variance is extremely
sensitive on the cutoff behavior of f���. For temperatures
around Tc this cutoff can be predicted from Eq. �7� by setting
�=−306 as an estimate for the low-energy cutoff of the en-
ergy landscape. It turns out �max�105��� which corresponds
to roughly 1010 MD steps. Only for simulation times much
longer than �max and thus many orders of magnitude longer
than possible by present computer technology the variance of
the observed waiting time distribution can be determined
from simulations around Tc. This will be explicitly demon-
strated in the next section.

Evidently, the very long waiting times result from MB
with very low energies. Therefore it may be very instructive
to analyze the fluctuations of waiting times of MB, restricted
to energy e. This restricted quantity is denoted as S�e ,T�. For
very low energies one may expect that due to the extremely
small number of contributing MB the estimated variance will
be smaller than the true variance. Only for higher energies
S�e ,T� can be estimated without systematic errors from finite
simulation times. We restrict ourselves again to the interval
�−300,−295�. S�e ,T� is expected to show a sensitive depen-
dence on the nature of the ETM. If, for example, the total
BMLJ system could be described as a single trap system
�M =1�, MB with energy e would be described by a single
relaxation rate, yielding S�e�=1. For M 	1 the total energy
can be decomposed in different ways, resulting in different
values of ��e1 ,… ,eM� for fixed total energy e1+ ¯ +eM; see
Eq. �9�. The resulting distribution is a sum of different expo-
nentially distributed functions, giving rise to S�e�	1. The
data for the BMLJ system for T=0.45; 0.5; 0.6 are shown in
the inset of Fig. 8 for the interval e� �−300,−295�. The av-
erage value of S�e ,T� in this interval is denoted S0�T�. It is
plotted in Fig. 8 for the three temperatures. Furthermore we
have added the predictions for S0�T� of the ETM for M =3
and M =6. It turns out that the data are inconsistent with the
predictions of the ETM for M =3. Rather a good agreement
with M =6 is suggested. As will be discussed further below a
very natural mechanism may exist which reduces the size of
the fluctuations of waiting times for a real system as com-
pared to the predictions of the ETM. Therefore we propose

that M �3 as obtained fromthe analysis of ���e ,T�� is indeed
the relevant value for the ETM.

B. Sequence of energies

In a last step we analyze the sequence of MB energies.
Since the energy distribution of the real system is naturally
recovered by the trap model �see above� the nontrivial aspect
is related to possible correlations of successive MB energies
as measured by the autocorrelation function fe�n�. The func-
tion fe�n�, obtained for the BMLJ system, is shown in Fig. 9.
Since for T=0.5 one has ���20��� ��� determined from the
incoherent scattering function� the energy correlation decays
on the time scale of the �-relaxation.

Dramatic differences are visible when comparing fe�n�
with the predictions of the ETM �M =3� without including
the dynamic interaction, i.e., q=0. Whereas the energies for
the BMLJ system significantly decorrelate after 40 steps, ba-
sically no decorrelation is seen for the ETM. This can be
easily, rationalized. In the typical scenario, discussed above,
very often there exists one subsystem which is much faster
than the other two subsystems and, correspondingly, has a
relatively high energy. This fast subsystem jumps and, on
average, will acquire a new waiting time which is still much
faster than the waiting time of the other two subsystems.
Thus the energy of the slower systems will remain un-
changed even after a large number of transitions. This auto-
matically implies strong correlations for successive total en-
ergies of the ETM.

In contrast, a finite dynamic interaction results in addi-
tional reorganization processes of the slow subsystems,
thereby changing their energy according to the p distribution.
Although p�e ,T� is shifted to lower energies as compared to

�e ,T� there will be the chance to acquire a relatively high
energy after a few transitions of the fast subsystem and start
to contribute to the relaxation. Therefore one can expect that
a finite q will give rise to a considerable decorrelation of
energy. This can be seen in Fig. 9 where data for q=0.12 are
included. With this value the initial part of the decorrelation

FIG. 8. �Color online� Inset: Energy dependence of the normal-
ized variance S�e ,T� for different temperatures for the BMLJ sys-
tem. Main panel: Comparison of the respective average values
S0�T� with the predictions of the ETM for M =3 and M =6.

FIG. 9. �Color online� Decay of the energy-autocorrelation func-
tion in dependence of the number of MB transitions at T=0.5.
Shown are the MD data for the BMLJ system �circles� and the
predictions with �q=0.12� and without �q=0.0� dynamic coupling
for the case M =3.
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can be reproduced. Taking the strong dependence of fe�n� on
the value of q into account one may estimate the uncertainty
of this value by ±0.02. Actually, a similar analysis for the
two other temperatures yield q values in the same interval
although the data suggest a minor temperature dependence
�q�T=0.6��0.14;q�T=0.45��0.11�.

Of course, this mechanism of dynamic interaction is far
too simple to explain the complex coupling between different
relaxation modes in supercooled liquids. In particular, it
turns out that finally the decorrelation, generated by the dy-
namic interaction, is too strong. From a physical point of
view one would expect that states with lower energies are
less sensitive to fluctuations in the neighborhood than states
with somewhat higher energies. This implies a dependence
of the strength of the dynamic interaction on energy. Quali-
tatively, this property would explain the remaining deviations
in Fig. 9. Unfortunately, when introducing an energy-
dependent q value one would be forced to modify the simple
rule based on Eq. �3� in order to obtain the same thermody-
namic properties. This is beyond the scope of the present
work and would not yield any relevant new insight into the
nature of the PEL of the BMLJ system.

V. DISCUSSION

A. Length scales and finite-size effects

Analyzing the time series of waiting times the BMLJ sys-
tem with 65 particles behaves to a first approximation as if it
were a superposition of M �3 independent subsystems. Each
subsystem contains on average 20–25 particles. However,
performing MD simulations with this very small number of
particles �and periodic boundary conditions� one would ob-
serve strong finite-size effects. Thus, it is not possible to
perform simulations on the level of the elementary units of
the ETM. In this sense it is impossible to see the elementary
trap system directly. Rather the properties of the individual
subsystems, mainly expressed by the value of the barrier b,
have to be extracted from the superposition of at least 2–3
subsystems, corresponding to roughly 65 particles in real
space. Why does a PEL of a BMLJ system with only 20
particles show significant finite size effects? First, the pres-
ence of dynamic interaction directly shows that the coupling
among adjacent regions of the supercooled liquid is essential
for the dynamics. Second, one can imagine that the real-
space pattern of those particles which move together during
one MB transition may be shaped in a stringlike manner
�49,50�. Therefore the minimum size system without major
finite-size effects has to be larger than the elementary sub-
system of the ETM. Otherwise the real-space patterns cannot
be formed appropriately.

Of course, one could repeat the analysis also for larger
systems. Evidently, larger values of M would have been
found. In any event, since a BMLJ system with N=130 par-
ticles behaves like a superposition of two systems with N
=65 particles one would end up with a ETM which is a
trivial extension of the present system.

B. How to rationalize the size of waiting time fluctuations
at constant energy?

The only observable which did not agree with the predic-
tions of the ETM was the second moment of the waiting time

distribution. The fluctuations at constant energy as expressed
by S0�T� are smaller than expected for M =3. Is there a
simple physical picture which may reconcile these results?

Recently a detailed real-space analysis of the nature of the
MB transition has been performed for the BMLJ system
�39�. In particular the number of particles, participating at
such a transition, has been studied. This number can be quan-
tified by the participation number

z = �
i

dri

dR
. �18�

Here the sum is over all large particles of the binary
Lennard-Jones system. dri is the displacement of the ith par-
ticle and dR2 is the total squared displacement of all large
particles. In case only one particle is moving one has z=1, in
case of identical movement of n particles one gets z=n. It
turns out that for different MB transitions the participation
number z can have very different values. The resulting dis-
tribution p�z� has significant contributions between z�8 and
z�25. Since the absolute numbers somewhat depend on the
definition of z �38� we mainly stress the width of p�z� rather
than the absolute numbers.

In the ETM, as introduced above, we have introduced M
identical subsystems. If this corresponded to the real world
of BMLJ systems, one would expect a very narrow distribu-
tion p�z�. The width of p�z� therefore implies that the as-
sumption of identical subsystems cannot hold. In any event,
it is natural to assume that at a given time the set of sub-
systems displays different sizes; see Fig. 10 for a simple
sketch.

To understand the effect of these fluctuations on the wait-
ing time distribution one may consider the case of M identi-
cal subsystems for fixed total energy e. The maximum wait-
ing time of the total system is realized if by chance all M
subsystems have the energy e /M and the corresponding
waiting time �e. Otherwise there is at least one subsystem
with higher energy and �on average� shorter waiting time as
compared to �e. Thus the presence of the long-time wing of
the waiting time distribution at constant energy is critically
related to the presence of subsystems with identical waiting
times. Allowing for size fluctuations it is likely that one sub-
system is smaller than the other. Since on average smaller
systems are faster than larger systems �see, e.g., Table II� one
can expect that for a given total energy e this subsystem and
thus the total system has a waiting time much smaller than
�e. Therefore size fluctuations strongly reduce the probability
of having a situation with a very long waiting time for the
whole system. As a consequence, these fluctuations strongly
suppress the long-time tail of the waiting time distribution,

FIG. 10. Sketch of the size fluctuations of a ETM with M =3.
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thereby reducing higher moments of this distribution. One
may speculate that this is the reason that the fluctuations for
the BMLJ are somewhat smaller than expected from the av-
erage waiting times. Of course, additionally also the value of
M may somewhat differ for different MB.

C. Implications for dynamic heterogeneities

The presence of short and long waiting times can be di-
rectly related to the concept of dynamic heterogeneities, ob-
served in many experiments. As discussed above, a relevant
measure for the presence of dynamic heterogeneities is the
value of S�T�. On the level of the elementary subsystem in
the ETM the dynamic heterogeneity is exclusively related to
the presence of different trap depths which, via Eq. �7�, gives
rise to a broad distribution of waiting times. For the BMLJ
system with 65 or more particles, i.e., �in the language of the
ETM� for a superposition of a few elementary subsystems,
the dynamic heterogeneities can be formally divided into two
parts. First, already at constant total energy e one has a range
of different waiting times as reflected by S0�T�	1 �for M
	1�. Second, the average waiting time ���e ,T�� depends on
energy. Comparing the size of �S0�T=0.45��3 with the
range of the energy dependence of ���e ,T�� it becomes ob-
vious that for 65 particles the dynamic heterogeneities are
mainly determined by the energy dependence of the average
waiting time.

It is possible to characterize the properties of dynamic
heterogeneities somewhat closer. As discussed before, the
dynamic heterogeneities or, equivalently, the width of the
waiting time distribution is captured by the normalized vari-
ance S�T� �see Eq. �17��. In the limit of very long simulation
times tsim as compared to the range of waiting times, the
equilibrium value of S�T� can be extracted from the simula-
tions. How to find an appropriate way of extracting corre-
sponding information at shorter simulation times? As already
discussed in the context of the determination of ���T�� it is
convenient to analyze the number of MB transitions. Beyond
the determination of the average number of MB transitions
one can estimate its variance ��n− �n��2� by comparing the
number of MB transitions during a fixed time tsim of several
independent simulations. Then one may define

S�T,tsim� =
��n − �n��2�

�n�2

tsim

���
. �19�

As shown in Appendix B in the limit of long tsim the quantity
S�T , tsim� approaches the equilibrium value of S�T�. For
shorter times S�T , tsim� reflects the normalized variance of
that part of the waiting time distribution which can be ac-
cessed on the time scale of the simulation tsim. Thus any
dependence of S�T , tsim� on tsim indicates that the finite simu-
lation time introduces an artificial cutoff for the waiting time
distribution. As shown in Figure 11 for T�0.5 the value of
S�T , tsim� for the BMLJ system still shows a strong increase
for tsim�1000����20�� which already corresponds to rela-
tively long simulation times.

It may be instructive to compare the long-time limit of
S�T , tsim� for the BMLJ system with the predictions of the

ETM. We have estimated the latter value by taking �using
M =3� S�T� · �S0,BMLJ�T� /S0,ETM�T��. The second factor cor-
rects for the fact that the actual dynamic heterogeneities of
traps with identical energy are smaller than the predictions of
the ETM; see Fig. 8. The results are included in Fig. 11. For
the highest temperature T=0.6 the long-time limit of
S�T , tsim� can be reached for tsim�1000���. Good agreement
with the prediction of the ETM is observed. The large esti-
mates of S�T� within the ETM for the two lower tempera-
tures reflect the broad dynamic heterogeneity at low tem-
peratures. They only fully show up in the limit of very long
simulation times.

This result has interesting consequences for the planning
of simulations. The value of S�T , tsim� is a measure of how
precisely the true value of ��� can be extracted from the
simulation. More specifically, from L independent runs the
value of ��� can be extracted with a precision of
��S�T , tsim�� / �Ltsim / ����. Here we have assumed that a simu-
lation of length tsim implies the drawing of tsim / ��� indepen-
dent waiting times. If S�T , tsim� does not depend on tsim one
could either perform a long simulation or several short simu-
lations to obtain the same quality of ���. Due to the time
dependence of S�T , tsim� it is more favorable to choose tsim

relatively short and thus perform many independent runs for
fixed total computer time. Alternatively, one can also per-
form a few simulations for a correspondingly larger system
and obtain the same quality for the average waiting time.
Since the diffusion constant is directly related to ��� the same
conclusions hold for the determination of the diffusion con-
stant.

Recently, the variance of the mean square displacement
��r2− �r2��2� / �r2�2 has been obtained from comparison of in-
dependent simulation runs �23�. On a superficial level this
ratio resembles the quantity ��n− �n��2� / �n�2 analyzed above.
A possible mapping between the observables r2 and n is
further suggested by the validity of Eq. �1�. Closer analysis,
however, reveals that this mapping is not possible. For a

FIG. 11. �Color online� The dependence of the normalized vari-
ance S�T , tsim� on simulation time tsim and temperature for the
BMLJ system. The straight lines are the estimates of the ETM for
the respective limiting values. The estimates for the ETM have been
scaled by a factor, reflecting the deviations for S0�T� between the
ETM and the BMLJ system.
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simple random walker in one dimension �1D� one has
p�r2�dr2=exp�−r2 / �r2��dr2 �23�. In contrast, according to
Appendix B the the value of n displays a Gaussian distribu-
tion around �n�. As discussed in �23� the information content
of the variance of the mean square displacement is more
related to the size of dynamic heterogeneities whereas in the
present case we are sensitive to the distribution of waiting
times, i.e., to the degree of dynamic heterogeneities. In any
event, the common idea is to use independent simulations to
extract important information about the non trivial dynamic
properties of supercooled liquids.

Following the general ideas, underlying the Adam-Gibbs
scenario or alternative descriptions of the physics of super-
cooled liquids at low temperatures �53–55� one might expect
a growing length scale of the cooperativity range. In the
present approach the length scale is reflected by the slope of
T ln���e ,T��. Indeed, some temperature dependence has been
observed, changing the slope by roughly 30% when chang-
ing the temperature from Tc �0.45� to 1.33Tc �0.6�. In terms
of the ETM this implies a weak temperature dependence of
the cooperativity size. Actually, the slopes for T=0.45 and
T=0.5 were compatible with M =3.

It may be instructive to compare this weak temperature
dependence with that of other observables which character-
ize length scales of dynamic heterogeneities. Analogous be-
havior is observed for the average value of the participation
number z; see Eq. �18�. This value is basically constant when
comparing T=0.5 and T=0.435 �39�. In contrast, a strong
temperature dependence is observed for quantities which are
determined from the space-time behavior of particles. For
example, the maximum of the generalized susceptibility,
characterizing the size of cooperativity regions, varies by
roughly a factor of 5 in the temperature regime analyzed in
this work; see, e.g., the behavior of �M in Ref. �56�. How to
rationalize this apparent discrepancy? In the language of
MB, dynamic heterogeneities have different facets: �i� The
spatial range of particles moving during individual MB tran-
sitions and spatial correlations of subsequent transitions �39�.
Both aspects are part of the ETM. The first aspect is directly
reflected by the value of M. The second aspect is related to
the question of how many successive hops are on average
performed by the same subsystem until a different subsystem
relaxes. This value is denoted nsucc. It can be easily calcu-
lated from simulation of the ETM. As shown in Fig. 12 nsucc
is strongly temperature dependent and increases within the
temperature regime of interest by a factor of 6. In the space-
time analysis one is sensitive to the sequence of fast pro-
cesses, i.e., the sequence of MB transitions. Thus one may
expect that the increase of the generalized susceptibility with
decreasing temperature is at least partly due to the increase
of nsucc. On a qualitative level similar effects have been al-
ready reported in �39� where the formation of macro strings
out of micro-strings has been observed.

VI. SUMMARY

Many observations for the BMLJ system are consistent
with the notion that the PEL can be characterized as a super-
position of individual trap like systems where the individual

traps are identified as MB �and not as inherent structures�.
The main observations are �i� the random-walk nature of the
dynamics inphase space, �ii� the exponential waiting time
distribution to leave MB, �iii� the temperature independent
distance of subsequent MB, �iv� the absence of correlations
of subsequent MB waiting times, and �v� the linear energy
dependence of T ln���e ,T�� for all temperatures. Analysis of
the slightly temperature dependent slope of T ln���e ,T��
yields information about the number M of subsystems and
the common barrier height b.

From the predictions of this simple model two deviations
from the behavior of the BMLJ system have been observed.
First, the energy correlation function decays faster than ex-
pected from the superposition of traps. This observation di-
rectly indicates the presence of some interaction between
these subsystems, expressed by the dynamic interaction pa-
rameter q, thereby completing our definition of the extended
trap model �ETM�. Second, the dynamic heterogeneities of
MB with constant e were smaller than expected. This may be
a natural consequence of size fluctuations of the subsystems.
In principle it would be possible to include size fluctuations
into the ETM by introducing a new parameter. This is, how-
ever, beyond the scope of the present work.

Our results may be helpful in several ways. The compari-
son of the BMLJ dynamics with the predictions of a super-
position of appropriately chosen trap models may elucidate
important properties of the PEL of a prototype glass-forming
system. Furthermore, this analysis may serve as a fresh look
onto the properties of dynamic heterogeneities. Finally, the
ETM has the ability to reproduce also nonequilibrium prop-
erties at least on a semi-quantitative basis. For example it
may be feasible to reproduce complex aging procedures and
to obtain a simple physical picture of the resulting observa-
tions �see also �57��. For this purpose it is helpful that the
relevant length scale for the ETM, as expressed by the value
of M, is only weakly temperature dependent.

FIG. 12. The average number nsucc of successive hopping pro-
cesses of the same subensemble in the ETM with M =3 for different
temperatures.
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APPENDIX A

We consider a simple system which can be in different
states with weights 
i. The relaxation process in each state is
characterized by an exponential waiting time distribution
with average �i. Thus the resulting average waiting time is
given by ���=�i
i�i. In equilibrium the probability to be in
state i is given by pi=
i�i / ���. First, we consider a simula-
tion of time tsim which is much smaller than any of the �i. In
particular one has tsim� ���. The goal is to estimate the value
of ��� from the outcome of the simulation. As described in
the main text we may proceed in two different ways. One
option is to determine the average waiting time. Since tsim is
very smallat most a single relaxation process will be ob-
served. For calculating the average waiting time �in the en-
semble average� the most convenient way would be to re-
strict oneself to those instances where at least a single
relaxation process has occurred. Due to the smallness of tsim
it may occur at any time with equal probability so that the
average waiting time will be tsim /2. This value is, of course,
much smaller than the true average waiting time ���. Actu-
ally, only if tsim is much larger than all �i a consistent esti-
mate is possible. The second option is to determine the av-
erage number �n� of relaxation processes. Weighting the
initial state with its probability pi, i.e., assuming equilibrium
conditions, and taking into account that the chance of a re-
laxation process during time tsim is given by tsim /�i one ends
up with

�n� = �
i

pi
tsim

�i
= �

i


i
tsim

���
=

tsim

���
. �A1�

Thus tsim / �n� is an exact estimate of the average waiting time
���. This result also holds for larger values of tsim because the

large time interval can be decomposed into small intervals
and the average value of �n� will simply scale with the num-
ber of small time intervals such that �n�= tsim / ��� will hold
for arbitrary tsim.

APPENDIX B

Of conceptual interest is the variance ��
2 of the waiting

time distribution. We show that it is related to the variance
�n

2, obtained from a set of independent runs. According to the
central limit theorem the probability that it takes a time t to
perform n jumps is given by

p�t	n� � exp
− �t − n����2

2n��
2 � . �B1�

Here we used that successive jumps are independent from
each other so that we can consider a drawing of n indepen-
dent elements from the waiting time distribution. Fixing the
value of t as tsim this probability can be reinterpreted as the
probability p�n	t� that exactly n jumps occur during time tsim.
Thus one obtains

p�n	tsim� � exp
− �n − tsim/����2

2n��
2/���2 � . �B2�

In the limit of large tsim the n dependence of the normaliza-
tion factor can be neglected. Furthermore the factor n in the
denominator of the exponential can be substituted by �n�
= tsim / ���. Therefore the variance of n, i.e., �n, can be written
as

�n
2

�n�2 =
��

2

����n�
=

���
tsim

��
2

���2 �B3�

This directly leads to Eq. �19�
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